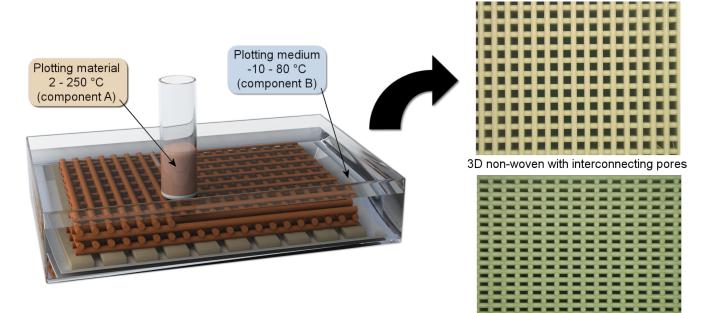
EnvisionTEC

Biofabrication

www.envisiontec.com

The 3D-Bioplotter[®] Process

- Unique to the 3D-Bioplotter®
- 4th Generation 3D-Bioplotter[®] Manufacturer Series
- 4th Generation 3D-Bioplotter[®] Developer Series
- 4th Generation 3D-Bioplotter[®] Starter Series
- Key Features of the 3D-Bioplotter®
- **3D-Bioplotter Materials**
- Application: Bone Regeneration
- **Application: Drug Release**
- Application: Cell/Organ Printing & Soft Tissue Fabrication
- **Other Applications**


3D Bioprinting - The Future Is Now!

The EnvisionTEC 3D-Bioplotter[®] system has been used since 2000 for a variety of medical applications. Most research done to date using our machines has been in the pre-clinical setting, yielding many publications by pre-eminent scientists from the materials science, neuroimaging, and toxicology disciplines. In the clinical setting, patient CT or MRI scans are used to create STL files to print solid 3D models which can then be used as templates for implants.

Tissue Engineering and Controlled Drug Release require 3D scaffolds with welldefined external and internal structures. The 3D-Bioplotter[®] has the capacity of fabricating scaffolds using the widest range of materials of any singular Rapid Prototyping machine, from soft hydrogels over polymer melts up to hard ceramics and metals. Complex inner patterns can easily be designed using the 3D-Bioplotter[®] software to both control the mechanical properties, increase cell adhesion, as well as improve the flow of nutrient media throughout the interconnecting pores of the printed implants.

Al Siblani - CEO EnvisionTEC

The **3D-BIOPLOTTER**[®] Process

A simple process:

A liquid, melt, paste or gel is dispensed from a material cartridge through a needle tip from a 3-axis system to create a 3D object.

One single requirement:

The material to be used must, through a physical or chemical reaction, solidify.

A world of possibilities:

The widest range of materials of any 3D printing technology can be processed.

Unique to the **3D-BIOPLOTTER**[®] Process

Uses raw materials (powder, pellets, etc.) without requiring a preprocessed filament.

Medical-grade materials can be used.

Designed for use in a sterile biosafety cabinet with built-in sterile and particle filters for the input compressed air.

Materials are kept in sterilizable cartridges, thus avoiding touching the machine: easier to clean and sterilize.

Each customer can create their own processing parameters.

Not locked to any proprietary materials, customers can choose their prefered vendors, as well as required medical grades, mixture compositions and concentrations, additives, etc..

4th Generation **3D-BIOPLOTTER**° MANUFACTURER SERIES

- Designed both as a tool for advanced Tissue Engineering research, as well as for use in a production environment.
- Capable of using all hardware and software options of the 3D-Bioplotter Series.
- Includes heated platform and sterile filter, recommended for Cell Printing / Organ Printing.

Machine Specification Manufacturer Series

Axis Resolution (XYZ)	0.001 mm (0.00004")	
Speed	0.1 - 150 mm/s (0.004″ - 5.91″/s)	
Pressure	0.1 - 9.0 bar (1.45 - 130 psi)	
Build Volume (XYZ)	150 x 150 x 140 mm (5.91″ x 5.91″ x 5.51″)	
Needle Position Control	Z-Sensor + High Resolution Camera	
Camera Resolution (XY)	0.009 mm (0.00035") per Pixel	
Needle Sensor Resolution	0.001 mm (0.00004″)	
Minimum Strand Diameter	0.100 mm (0.004") - Material Dependent	
Number of Materials per Scaffold	Maximum 5 Materials Using 5 Print Heads	
Print Heads Included	1x Low and 1x High Temperature Head	
Filters Included	Particle and Sterile Filters	
Platform Temperature Control	Heating and Cooling Capable (-10°C to 80°C)	
Platform Height Control	Automatic Z-height Controlling System	
Material Calibration	Semi-Automatic Material Calibration	
	Automated Nozzle Cleaning Process	
Additional Features	4 External Temperature Sensor Ports	
	Layer by Layer Photographic Log	

4th Generation **3D-BIOPLOTTER**[®] DEVELOPER SERIES

- Designed for research groups new to the field of Tissue Engineering, as well as for specialized use, where the limited capability may still meet requirements.
- Consisting of the same basic hardware and software as the Manufacturer Series, but with reduced functionality regarding camera and park positions.
- Not upgradable to the same capability of the Manufacturer Series.

Machine Specification Developer Series

Axis Resolution (XYZ)	0.001 mm (0.00004")	
Speed	0.1 - 150 mm/s (0.004" - 5.91"/s)	
Pressure	0.1 - 9.0 bar (1.45 - 130 psi)	
Build Volume (XYZ)	150 x 150 x 140 mm (5.91″ x 5.91″ x 5.51″)	
Needle Position Control	Photo Sensor	
Camera Resolution (XY)	-	
Needle Sensor Resolution	0.03 mm (0.0012″)	
Minimum Strand Diameter	0.100 mm (0.004") - Material Dependent	
Number of Materials per Scaffold	Maximum 3 Materials using 3 Print Heads	
Print Heads Included	1x Low and 1x High Temperature Head	
Filters Included	Particle and Sterile Filters	
Platform Temperature Control	Heating and Cooling Capable (Chiller not included)	
Platform Height Control	Automatic Z-height Controlling System	
Material Calibration	Manual Material Calibration	
	Automated Nozzle Cleaning Process	
Additional Features	-	
	-	

4th Generation **3D-BIOPLOTTER**[®] STARTER SERIES

- Designed for research groups new to the field of Tissue Engineering with few requirements in parallel material processing and automation.
- Consisting of the same basic hardware and software as the Manufacturer & Developer Series, but lacking modular capability and platform temperature control.
- Not upgradable to the same capability of the Developer or Manufacturer Series.

Machine Specification Starter Series

Axis Resolution (XYZ)	0.001 mm (0.00004")	
Speed	0.1 - 150 mm/s (0.004" - 5.91"/s)	
Pressure	0.1 - 9.0 bar (1.45 - 130 psi)	
Build Volume (XYZ)	150 x 150 x 140 mm (5.91" x 5.91" x 5.51")	
Needle Position Control	Photo Sensor	
Camera Resolution (XY)	-	
Needle Sensor Resolution	0.03 mm (0.0012″)	
Minimum Strand Diameter	0.100 mm (0.004") - Material Dependent	
Number of Materials per Scaffold	Maximum 2 Materials	
Print Heads Included	2x Fixed High Temperature Heads (incl. adapter for smaller cartriges)	
Filters Included	Particle Filter	
Platform Temperature Control	No	
Platform Height Control	Manual	
Material Calibration	Manual Material Calibration	
Additional Features	Automated Nozzle Cleaning Process	
Auditional realures	Built-in PC	

Key Features **3D-BIOPLOTTER**[®]

A new user management allows users to both share projects, materials and patterns, as well as have their own separate set of files for improved overview and security.

Input of outer shapes through STL files.

Multi-part and multi-material capable through the use of an automatic tool changer and multiple print heads.

Generation of volume support structures for complex shapes.

	∰ BPP
L '	

Database of inner patterns (user-editable) in the controlling software, avoiding requiring patterns in the STL files.

|--|

Complex inner pattern with straight lines, zig-zag shapes and wave forms as well as hexagon shapes, including shift functions for "in between the lines" printing

Database of materials (user-editable) with all process parameters.

Material life time control to avoid scaffold fabrication with degraded materials.

Individual temperature control of each printing head, both in the parking positions, as well as during printing

Temperature curves with up to 5 set points and waiting times.

Complete control of all printing parameters (temperature, pressure, speed, etc) through the software.

Photographic log of the full platform for each layer available for verification of error-free object interior after printing. (Manufacturer Series only)

Mid-print measurement of strand dimensions using the built-in camera. (Manufacturer Series only)

Automatic Platform Height Control for Petri Dishes, Well Plates, as well as other printing surfaces. (Developer & Manufacturer Series only)

Improved surface finish of fabricated parts using randomized start position in outer contours.

2D Dot-Printing (Biopatterning) capability.

	4

888

Г	0			_
	ΗŤ	Н	Н	
	H			
	\square			Ъ.
Ľ	ـــــــــــــــــــــــــــــــــــــــ	_		_r

ſ		•	•
	-	•	
	•	•	•

Key Features **3D-BIOPLOTTER**®

Low Temperature Print Head (0 °C to 70 °C) with disposable PE cartridges.

High Temperature Print Head (30 °C to 250 °C) with reusable stainless steel cartridges.

UV Curing Head (365 nm).

Needle cleaning station, with automatic cleaning before and during the print project available.

Luer Lock needle tips, 0.1mm to 1.0mm inner diameter available.

Automatic recalibration of park position coordinates in extensively used 3D-Bioplotters (Manufacturer & Developer Series only).

LOG file creation after project completion with all relevant data.

Footprint (L x W x H): 976 x 623 x 773 mm (38.4" x 24.5" x 30.4") Weight: 90-130 kg (depending on the model) Electrical Requirements: 100-240 V AC, 50/60 Hz Compressed Air Requirements: 6 - 10 bar (85 - 145 psi)

3D-BIOPLOTTER[®] Materials

Bone/Cartilage Regeneration materials

Product Name	Material	Grade
PCL 45 RG	Polycaprolactone, MW 45	Research

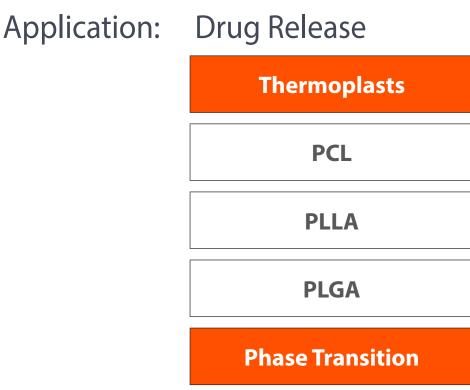
Soft Tissue Regeneration materials

Product Name	Material	Grade
To be released soon		

Support materials / others

Product Name	Material	Grade
HT Support	Sugar-based	Research
LT Support	Cellulose-based	Research

All materials are delivered with processing parameters and instructions of use (sterilization, pre-processing, post-processing, etc.).



Application: Bone Regeneration

Ceramic/Metal Pastes	Thermoplasts	
Hydroxyapatite	PCL	
Titanium	PLLA	
Tricalcium Phosphate	PLGA	
Sintering	Phase Transition	

Sample Papers:

- Li, J. P., et al. "The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants." Journal of Biomedical Materials Research Part A 92.1 (2010): 33-42.
- Haberstroh, K., et al. "Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects." Journal of Biomedical Materials Research Part B: Applied Biomaterials 93.2 (2010): 520-530.
- Zhang, J., et al. **"3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia.**" Journal of Materials Chemistry B 2.43 (2014): 7583-7595.
- Yuan, J., et al. "The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs." Journal of Materials Science 50.5 (2015): 2138-2147.

Sample Papers:

- Kammerer, M., et al. "Valproate release from polycaprolactone implants prepared by 3D- bioplotting." Die Pharmazie-An International Journal of Pharmaceutical Sciences 66.7 (2011): 511-516.
- Yilgor, P., et al. "An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defects." Journal of tissue engineering and regenerative medicine 7.9 (2013): 687-696.
- Yuan, J., et al. **"The preliminary performance study of the 3D printing of a tricalcium phosphate scaffold for the loading of sustained release anti-tuberculosis drugs.**" Journal of Materials Science 50.5 (2015): 2138-2147.
- Zhu, M., et al.., 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy". Acta Biomaterialia, Volume 16, 1 April 2015, Pages 145-155.

Application: Soft Tissue & Cartilage Fabrication Cell Printing & Organ Printing

Hydrogels					
Agar	Soy	Alginate	Chitosan		
Gelatin	Hyaluronic Acid	Fibrin	Collagen		
Phase	Transition	2 Component System	Precipation		

Sample Papers:

- Billiet, Th., et al. **"The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.**" Biomaterials 35.1 (2014): 49-62.
- Chien, K. B., et al. **"In vivo acute and humoral response to three-dimensional porous soy protein scaffolds.**" Acta Biomaterialia 9.11 (2013): 8983-8990.
- Chung, E. J., Jakus, A. E. and Shah, R.E. "In situ forming collagen-hyaluronic acid membrane structures: mechanism of self-assembly and applications in regenerative medicine." Acta Biomaterialia 9.2 (2013): 5153-5161.
- Wang, M., et al. "Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering." Frontiers of Materials Science 7.3 (2013): 269-284.
- Izadifar, Z., et al. "Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering." Tissue Engineering Part C: Methods. March 2016, 22(3): 173-188.

Other Applications

Other Materials				
Polyurethane	Silicone	Acrylates	Graphene	
Phase Transition	RTV 1	UV Curing	Evaporation	

Sample Papers:

- Kiziltay, A., et al., Poly (ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells." Journal of tissue engineering and regenerative medicine (2013).
- Bakarich, S. E., Robert Gorkin, et al.. **"4D printing with mechanically robust, thermally actuating hydrogels.**" Macromolecular rapid communications 36.12 (2015): 1211-1217.
- Nathan-Walleser, T., et al. "3D Micro-Extrusion of Graphene-based Active Electrodes: Towards High-Rate AC Line Filtering Performance Electrochemical Capacitors." Advanced Functional Materials 24.29 (2014): 4706-4716.
- Jakus, A. E., et al. "Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications." ACS nano 9.4 (2015): 4636-4648.

Find more 3D-Bioplotter papers at: http://envisiontec.com/3d-bioplotter-research-papers/

Envisiontec

EnvisionTEC GmbH

Brüsseler Straße 51 D-45968 Gladbeck Germany Fon: +49 2043 9875 0 www.envisiontec.com europe@envisiontec.com

EnvisionTEC, Inc.

15162 South Commerce Dearborn, MI 48120 USA Phone: +1 313 436 4300 www.envisiontec.com northamerica@envisiontec.com